VERIFICA 15

TEORIA

- 1. Dare la definizione di prodotto interno in R³ e mostrare con un controesempio che per questa operazione non vale la legge di annullamento del prodotto.
- 2. Dare la definizione di vettori linearmente indipendenti in R⁴ e spiegare perché se si considera un insieme di vettori di R⁴ tra cui il vettore nullo, i vettori di questo insieme sono linearmente dipendenti
- 3. Dare la definizione di base di uno spazio vettoriale e portare l'esempio di una base di R⁴.
- 4. Dire quando un sottoinsieme di R² è un sottospazio vettoriale di R². Portare l'esempio di un sottoinsieme di R² che non sia sottospazio e spiegare perché non lo è.

PRATICA

- 1. Dati i vettori $\underline{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 4 \end{pmatrix}$ e $\underline{y} = \begin{pmatrix} 1 \\ 1 \\ 20 \\ 0 \end{pmatrix}$, determinare i vettori $\underline{x} + \underline{y}$, \underline{x} . \underline{y} e $\lambda \underline{x}$ con $\underline{\lambda} = -3$.
- 2. Verificare che i vettori $\underline{x} = (1,2)$, $\underline{y} = (0,2)$ costituiscono una base di \mathbb{R}^2 .
- 3. Individuare un insieme di vettori linearmente dipendenti di R³