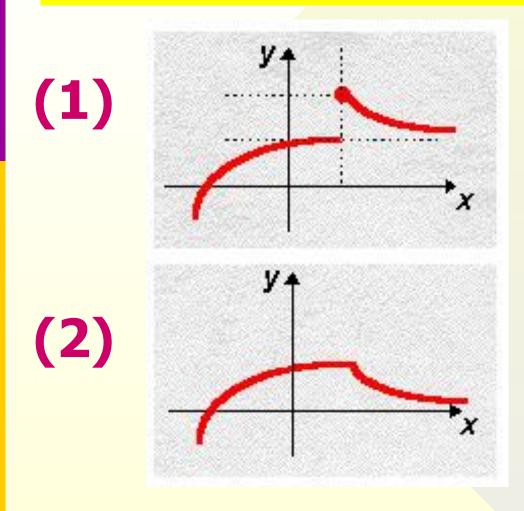
FUNZIONI CONTINUE



Fra i due grafici (1) e (2), quale, secondo il vostro intuito, può essere quello di una funzione continua?

IL SECONDO

(Alcuni dicono che una funzione è continua su un intervallo quando la si può rappresentare senza staccare la penna dal foglio)

Data $f: A \rightarrow R$ diamo una DEFINIZIONE rigorosa di continuità della funzione in un punto $x^* \in A$

Se x*∈A ed è un punto di accumulazione per A, si dirà che f è continua in x* se

$$\lim_{x \to x^*} f(x) = f(x^*)$$

Isolato, si dirà che Se x*∈A è un punto

f è continua in x*

Si dirà che

f è continua in A

se essa è continua ∀x*∈A

che: punto x* A sta a significare La definizione di continuità in un

$$D) \quad \exists \lim_{x \to x^*} f(x) = L$$

Se almeno una delle due condizioni (a) o (b) Viene a mancare, il punto x* sarà un

PUNTO DI

DISCONTINUITA'

per la funzione data

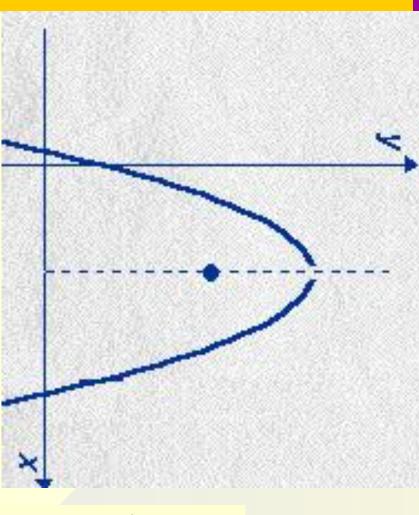
I caso

$$\exists \lim_{x \to x^*} f(x) = L \quad \text{ma} \quad L \neq f(x^*)$$

x* è un punto di discontinuità eliminabile

discontinuità con valore uguale a quello del limite continuità, ridefinendola nel punto di La funzione può essere prolungata per

$$f: R \to R; f(x) = \begin{cases} -x^2 + 4x + 1 & x \neq 2 \\ 3 & x = 2 \end{cases}$$



$$\lim_{x \to 2} (-x^2 + 4x + 1) = 5$$

$$x \to 2$$

$$x \to 3 = f(2)$$

$$\widetilde{f}(x) = \begin{cases} f(x) & x \neq 2 \\ 5 & x = 2 \end{cases}$$

è continua

$$\exists \lim_{x \to (x^*)^-} f(x) = L' \text{ e } \exists \lim_{x \to (x^*)^+} f(x) = L''$$

$$= \text{con L' e L'' finiti e L'} \neq \text{L''}$$

x* è un punto di discontinuità di prima specie

$$f: R \to R; f(x) = \begin{cases} \frac{|x|}{x} + 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$\lim_{x \to 0^{-}} f(x) = 0$$

$$\lim_{x \to 0^{+}} f(x) = 2$$

N

Poichè $\lim_{x\to 0^-} f(x) = 0 = f(0)$ si dice che f(x)

è continua a sinistra in x*

III caso

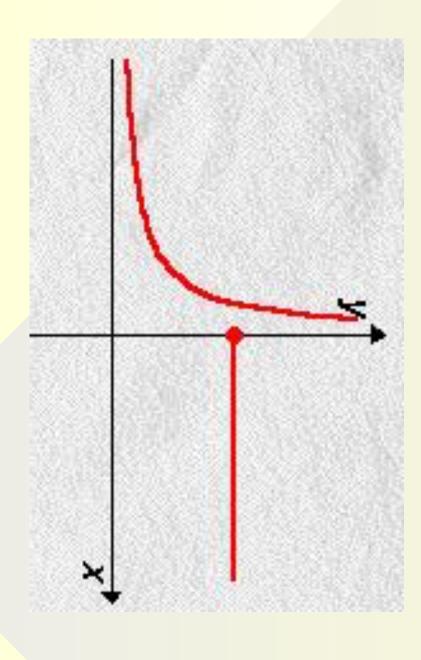
$$\exists \lim_{x \to (x^*)^-} f(x) = L' \in \exists \lim_{x \to (x^*)^+} f(x) = L''$$

con almeno uno dei due infinito

 \leftarrow

x* è un punto di discontinuità di seconda specie

$$f: R \to R; f(x) = \begin{cases} -\frac{1}{x} & x < 0 \\ 2 & x \ge 0 \end{cases}$$



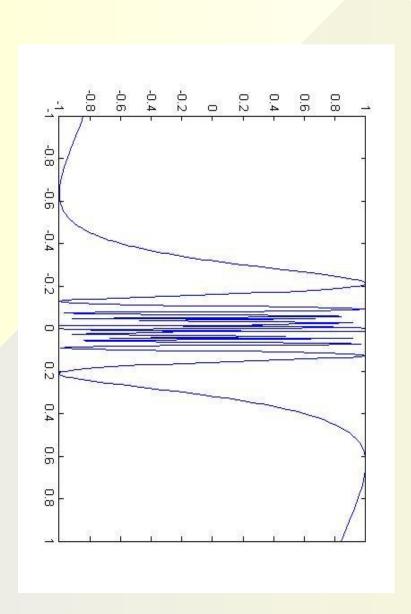
$$\lim_{x\to 0^{-}} f(x) = +\infty \ e \lim_{x\to 0^{+}} f(x) = 2$$

Z almeno uno dei due limiti

$$\lim_{x\to(x^*)^-} f(x) \circ \lim_{x\to(x^*)^+} f(x)$$

x* è un punto di discontinuità di terza specie

$$f: R \to R; f(x) = \begin{cases} \operatorname{sen} \frac{1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}$$



$\lim_{x\to 0} f(x)$ non esiste

NB: dalle proprietà relative alle facilmente che: operazioni con i limiti, si deduce

- è una funzione continua in x*
- è una funzione continua in x* 2011 prodotto di funzioni continue in x*
- funzione al denominatore è ≠0 in x* è una funzione continua in x* se la 3il rapporto di funzioni continue in x*

Altri due teoremi sulle funzioni continue

TEOREMA (della funzione composta)

Sia g continua in x*, f continua in y*=g(x*)

(=

f₀g è continua in x*

TEOREMA (della funzione inversa)

Sia f:(a,b)→R continua e invertibile ⇒

$$f^{-1}:f(a,b)\to R$$

è continua sul suo dominio

Stabilire se ∃ k∈R tale che la funzione

$$f(x) = \begin{cases} \operatorname{sen} x + x^2 + k \cos \sqrt{x} & x \ge 0 \\ \log(x^2) & x < 0 \end{cases}$$
Sia continua $\forall x \in \mathbb{R}$.

- continua; la somma di funzioni continue è sen $x \in X$ sono funzioni continue, $\cos \sqrt{x}$ è continua composta mediante funzioni continue quindi è per x>0 la funzione è continua ∀k∈R in quanto
- independente da k composta mediante funzioni continue e per x<0 la funzione è continua ∀k∈R in quanto

...continua

$$\lim_{x\to 0^+} f(x) = \mathbf{k}$$

$$\lim_{x\to 0^-} f(x) = -\infty$$

seconda specie VK∈R x*=0 è un punto di discontinuità di

(

国 k∈R: f(x) sia continua **Y**×**M**R

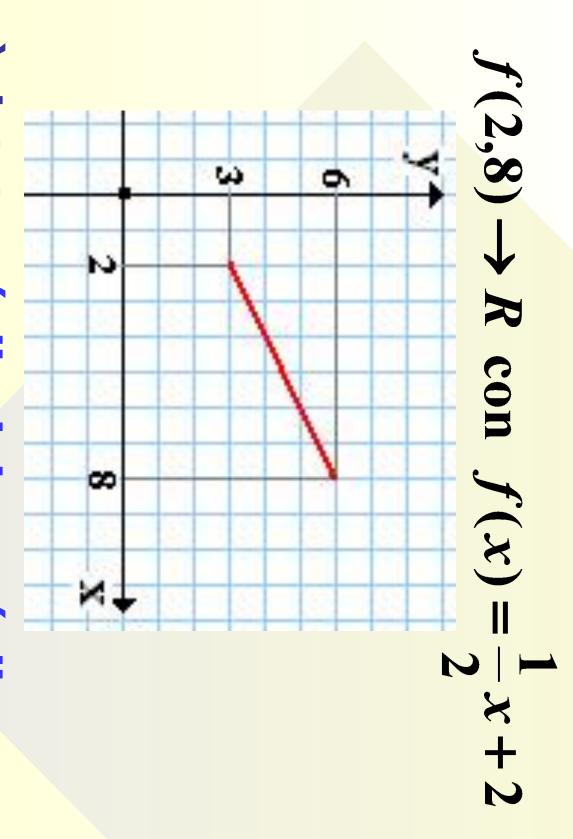
Principali teoremi sulle funzioni continue

TEOREMA (di Weierstrass)

è dotata di massimo e di minimo Una funzione continua in un intervallo [a,b] chiuso e limitato

nell'intervallo

sarebbe necessariamente vera. fosse chiuso, la tesi del Teorema non Osservazione: se l'intervallo [a,b] non

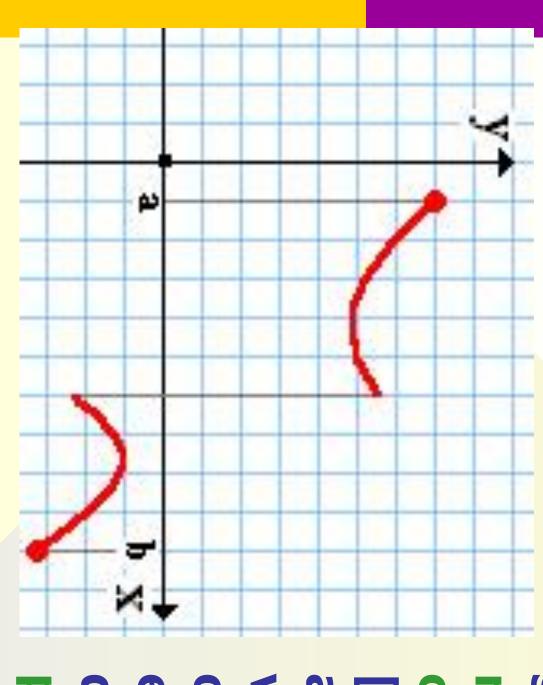


massimo ma solo di inf=3 e di sup=6 Non è dotata né di minimo né di

TEOREMA (di esistenza degli zeri)

- continua in [a,b] Sia f:[a,b]→R una funzione
- Sia f(a)·f(b)<0</p>

$$\exists \xi \in (a,b) : f(\xi) = 0$$



Osservazione:
se la funzione
non fosse
continua in
[a,b], pur
assumendo
valori di segno
opposto agli
estremi
dell'intervallo
potrebbe non
annullarsi per
alcun punto di

(a,b)

TEOREMA (dei valori intermedi)

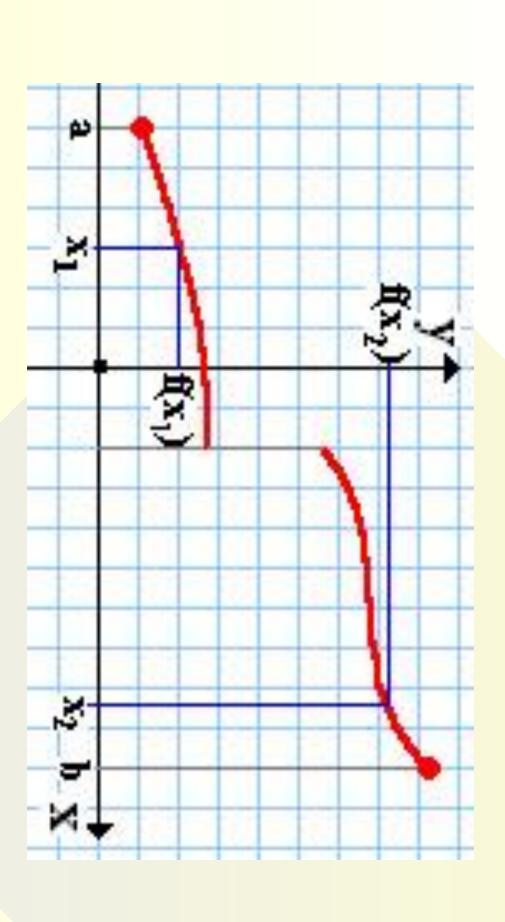
Sia f:(a,b)→R una funzione continua

Se
$$f(x_1) = y_1$$
 e $f(x_2) = y_2$

allora f assume tutti i valori

compresi fra y_1 e y_2 (y_2 e y_1)

per x compreso tra x_1 e x_2 (x_2 e x_1)



continua in (a,b), la tesi potrebbe non Osservazione: se la funzione non fosse essere vera