TMMF

Elisabetta Michetti

Parte 4 – Funzioni con MatLab

GRAPH OF
$$z=f(x,y)$$

Consider a function of two real variables

$$f: A \subseteq R^2 \operatorname{->R}$$

We want to depict its graph (or plot)

To the scope there exist **two different ways** in MatLab:

- 1) PUNCTUAL DEFINITION
- 2) ANONYMOUS FUNCTION

1) Graph with <u>punctual definition</u>

The steps are the following

- a. Define the interval of values that must be considered for the two independent variables. The interval must be defined as row vectors, x and y, having an high number of equally spaced elements. Thus the operator: or linspace can be used.
- b. Define a grid on the plane (x,y) constituted by the set of couples having one element of the vector x and the second element taken form the vector y

the command [X Y]=meshgrid(x,y) creates matrices X and Y

- c. Calculate the function z=f(X,Y) by applying f to the matrices X and Y. The punctual operators and the syntax of elementary functions must be considered. In such a way the value associated to each couple (x,y) is computed
- d. Depict the graph of the function by using commands surf(X,Y,z) or mesh(X,Y,z) that plots the set of points (x,y,z) in \square^3

EX (1)
$$z = \sin(x) \cdot \cos(y)$$

```
>> x=0:0.1:4;
>> y=-2:0.1:1;
>> [X Y]=meshgrid(x,y);
>> z=sin(X).*cos(Y);
>> mesh(X,Y,z)
```


EX (2)
$$z = \ln(x^2 + y^2) - x^2 y^2$$

```
>> y=-2:0.1:2;
>> y=-2:0.1:2;
>> [X Y]=meshgrid(x,y);
>> z=log(X.^2+Y.^2)-(X.^2).*(Y.^2);
>> surf(X,Y,z)
```


Plot the graphs of the following functions (punctual definition)

$$(1) \quad z = \ln(x) \cdot \ln(y)$$

consider $x \in [1, 4]$ and $y \in [1, 4]$ and use mesh

(2)
$$z = x^2 + y^2 - \cos(x) - \cos(y)$$

consider $x \in [-1,1]$ and $y \in [-1,1]$ and use surf

1) Graph with anonymous function

The steps are the following

a. Define the anonymous function by using the following expression:

```
z=@(x,y) law_of_xy
```

thus f(x,y) will be associated to z

Notice It is then possible to calculate the value of z at a given point (x0,y0) by using the command z(x0,y0)

b. Depict the plot by using one of the following commands:

```
ezsurf(z,[x_min x_max],[y_min y_max]) or
ezmesh(z,[x_min x_max],[y_min y_max]))
```

and the graph will be represented for the independent variables belonging to the defined intervals

(1)
$$z = 1 - x^2 - y^2$$

$$(2) \quad z = \sqrt{x^2 + y^2}$$

- $>> z=@(x,y) sqrt(x.^2+y.^2);$
- >> ezmesh(z,[-2 2],[-2 2]);

Visualisation options

Once the graph is obtained the options related to the visualisation of the graph can be activated and the tools of the graph-window can be used

- first show plot tools by activating View -> Palette, Browser, Editor
- click on the surface to modify its characteristic
- click on the space to modify the graph properties (such as title, labels, ticks and so on)

Plot the graphs of the following functions (anonymous definition)

(1)
$$z = \sqrt{|x| y^2} - |x|$$
 (use command ezsurf)

(2)
$$z = (xy)e^{x^2-y^2}$$
 (use command ezmesh)

Select a **suitable interval** for variables x and y

Adjust the obtained graphs by using the plot tools

LEVEL CURVES

The level curves of function z=f(x,y) can be plotted with MatLab

1. Punctual definition

Define the function by discretization and then use the command contour(x,y,z) (or contourf(x,y,z)) to obtain the level curves

$$(1) z = ye^{-x^2 - y^2}$$

```
>> x=linspace(-2,2,1000);
>> y=linspace(-2,2,1000);
>> [X Y]=meshgrid(x,y);
>> z=Y.*exp(-X.^2-Y.^2);
>> contour(x,y,z);
```


Notice: It is possible to add the z-value to each level curve

An output variable must be saved (for example c) while using the command contour:

[c]=contour(x,y,z)

With the instruction clabel(c) the z-value will be reported to each curve

- >> [c]=contour(x,y,z);
- >> clabel(c);

Plot the level curves of the following functions (punctual definition); choose opportune intervals

(1)
$$z = \frac{1}{x^2 + y^2 + 1}$$
 (use command contour)

(2) $z = |\sin(x) + \cos(y)|$ (use command contourf)

LEVEL CURVES

2. Anonymous definition

Define the fuction as an anonymous function

The command ezcontour(z,[x_min x_max],[y_min y_max])

(or ezcontourf(z,[x_min x_max],[y_min y_max])) must be used to plot the level curves

$$(2) \quad z = x^2 + y^2 - 2xy^3$$

>> z=@(x,y) x.^2+y.^2-2*x.*(y.^3); >> ezcontourf(z,[-400 400],[-400 400]);

Plot the level curves of the following functions by using the anonymous definition

(1)
$$z = \ln(|xy|) + \sqrt{x^2 + y^2}$$

$$(2) z = x^2 + y^2 - 1$$

It is also possible to plot both the surface and the level curves in the 3D space

1. Punctual definition

Define the function and then use the commands surfc(x,y,z) (or meshc(x,y,z))

2. Anonymous definition

Define the function and then use the commands

```
ezsurfc(z,[x_min x_max],[y_min y_max])
```

(o ezmeshc(z,[x_min x_max],[y_min y_max]))

(1)
$$z = x^2 - y^2 - x + 2 + y$$

>> x=-10:0.5:10; >> y=-10:0.5:10; >> [X Y]=meshgrid(x,y); >> z=X.^2-Y.^2-X+2+Y; >> surfc(x,y,z);

$$(2) \quad z = x^2 - y^2 + 2xy$$

>> z=@(x,y) x.^2-y.^2+2*x.*y; >> ezmeshc(z);

PLACE GRAPHS SIDE BY SIDE

It is also possible to plot two graphs side by side

Once a graph is obtained, by using the tool of the figure-window, it is possible to select the **new subplots** options

Then one of the plots can be selected: all the commands given in the command window will be applied to the selected plot. Change selection to apply command to a different plot

Notice: the command axis square can be used to obtain a square plot area

Plot the graph of the following function and put the level curves on the right hand side

$$z = \sin x + \cos y$$

1) Fristly plot the graph and then select a second subplot

$$>> z=@(x,y) \sin(x)+\cos(y);$$

>> ezmesh(z,[-8 8],[-8 8])

2) Select the second subplot and give instruction on the command window >> ezcontour(z,[-8 8],[-8 8])

Once obtained the second plot, select the first one and give command >>axis square

And do the same with the second graph!

Notice: the figure can be saved in several formats, for instance jpg

Plot the graphs and the level curves (side by side) of the following functions

(1)
$$z = \sqrt{|x^2 - y^2|} + ye^{x^2 + y^2}$$
 (use the anonymous definition)

(2)
$$z = x^2 + y^2 - xy$$
 (use the puntual definition)

Consider the following two functions

$$(1) z = x^2 - y^2 - 5xy$$

$$(2) z = \sqrt{x^2 + y^2 - 3}$$

- Calculate the value of z for x=12 and y=-2 for both functions
- Plot the graph of function (1) together with its level curves and then put on the right hand side the graph of function (2)
- Adjust the graph by using the plot tools and save the final figure in jpg format

Notice that: it is necessary to use the anonymous definition!

1.10 Consider the following function

$$z = \log |x^2y|$$

 Plot the graph and then put the level curves on the right hand side by specifying the z values

Notice that: it is necessary to use the punctual definition!

1.11

Consider the following linear utility function

$$y = 0.5x_1 + 0.2x_2$$

 Plot the graph and then put the indifference curves on the right hand side

Notice that: (1) the indifference curves are the level curves; (2) being an economic function only not-negative values of x and y must be considered!

1.12

Consider the following CES production function

$$z = 2(3x^{-0.5} + 0.5y^{-0.5})^{-0.2}$$

- Plot the graph and then put the isoquants on the right hand side

Notice that: being an economic function only not-negative values of x and y must be considered!