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Def: Neighborhood of x0

Def: Distance between two vectors

n n

1 1Let ( , , ) R , ( , , ) R .

The DISTANCE between x and y is the following not negative number:

n nx x x y y y     

2

1

( , ) ( )
n

i i

i

d x y x y x y


   

 0 0( , ) : ( , )nB x r x R d x x r  
0A NEIGHBORHOOD of  with radius   is given by:x r
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Let � ∈ �� and � ∈ �, � > 0



0 0We call the set ( , ),  - BALL about Notice: B x r r x

EX: x0 belongs to R

0 0 0B( , ) ( - , )x r x r x r  

EX: x0 belongs to R2
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Def: absolute (or global) maximum point and 

absolute (or global)  minimum point

Unconstrained optimization

Let :  and nf A R R x A
  

 is an ABSOLUTE MAXIMUM (MAX) point if

( ) ( )     

 is an ABSOLUTE MINIMUM (MIN) point if

( ) ( )     

x

f x f x x A

x

f x f x x A









  

  

Notice: If a point is an absolute max then there are no points in 

the domain at which f takes a larger value
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EX: absolute maximum
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Def: relative (or local) maximum point and relative 

(or local) minimum point

Let :  and nf A R R x A
  

 is a RELATIVE MAXIMUM point if

 ( , ) :   ( ) ( )  ( , )

 is an RELATIVE MINIMUM point if

 ( , ) :   ( ) ( )  ( , )

x

B x r f x f x x B x r A

x

B x r f x f x x B x r A



  



  

    

    

Notice: If a point is a local max then there are no nearby points 

at which f takes a larger value
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EX: local maximum and minimum

7



The main goal of this section it to give an answer to the following 

problem.

Let y=f(x) be a function of several variables, 

we want to determine its local maximum and 

local minimum points.

Notice: we will give an answer to this problem while 

considering functions f having some properties that are 

usually verified in economics.

Preliminarly we give some definitions extending those given for 

functions of one real variable.
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Def: LIMIT of a function

1

 

 :   ( , , )  

.

         

 

   

n n

n

n

x R A R

x A x

f A R R x x x A

A

  

 

   K

1)A point  is an  of  

if in all r -balls of  there exists a point of  different from 

2) Let and let

be an accumulation point of Then

accumulation point

 

1     

   0 0 ( )        

( ,

 

)

 ( , , )lim n

x x

f x

f x l

x

l

B A x

x

x

  





 



     

   

K  

if  such that 
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Def: CONTINUITY of a function

1 1

 :    

 .

  ( , , ) ( ) ( , , )lim

n

n n

x x

f A R R x A

A

f

f x x f x f

x

x x




  





  

 K K

Let and

an accumulation point of

 is  if

 

continuous in 

Notice: Function f is continuous in set A if it is 

continuous in all points of set A

We will consider only continuous functions!
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Def: PARTIAL DERIVATIVE

 :   .

 i

n

i

f A R R x A

x

  Let and

The PARTIAL DERIVATIVE of f

with respect to variable  s given by 

the following limit as long as it 

EXISTS and it is FINITE

 

1 1 1 1 1 1( , , , , , ) ( , , , , , )
lim
i i

i i i n i i i n

x x
i i

f x x x x x f x x x x x

x x

        
   






K K K K

( ) ( )
ix

i

f
f x x

x

 


  or  We can write it as:
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Def: GRADIENT VECTOR

 :  

                    ,

nf A R R

x A


 



                            If function f 

admits n partial derivatives in a point

     the vector containing the derivatives of f in that point 

is called GRADIENT VEC   fTOR and it is indicated by

1 2

( ) ( ), ( ), , ( )
n

f f f
f x x x x

x x x

      
      

K
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Def: function of CLASS C1

1

 :  

 

                    

 

nf A R R

x A

f xC





 





If all the partial derivatives of function

are continuous in a point

is said the be  in  of  class
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We will consider only C1 functions!



Ex1: consider the following functions

The gradient vectors are given by: 

The gradient of (1) in point (1,2) is

While the gradient of (2) in point (1,0,2) is given by

22 2

1 2 1 2 1 1 3(1) 2 5 , (2) 2 3
x

y x x x x y x x x e     
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2

1 2 2 1

1 3 1

(1) (2 5 , 4 5 ),

(2) (1/ 3 , ,3 ).
x

y x x x x

y x x e x

   

  

(1) (1,2) (12,13)y 

(2) (1,0,2) (7,1,3).y 



(1) Consider the following function

and determine the gradient vector in points (1,2,1) and 

(0,3,-1).

(2) Consider the following function

and determine the gradient vector. 

2 3

1 3 2 1 25y x x x x x  

UNCONSTRAINED OPTIMIZATION

Homeworks
EX 1.1

2

ln( 1)x yz e x y   



Determine the domain and the gradient vector of the 

following functions:

1

2

3 4 2

2

3 2 2

1 3

2

(1) 1

(2) 3 2

(3) ln( ) 3

1
(4) 4x

y x

z x y xy y

z x y x

y e x x
x



 

  

  

  
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*

*

*
Let :   function an

( ) 0 1,

d

,

 .

i

n

f

x

f A

n

R

x

x

i

A

x

R






 


 1
be a C A is an interior point of

If  is a local max or min of f 

 

e

  

th n
 

First order condition: THEOREM

UNCONSTRAINED OPTIMIZATION

Def. INTERIOR POINT

A point x* is an interior point of A if there exists a whole r-ball 

about x* in the domain A.



Def: Critical point

An interior point x is said to be a critical point if for all i 

( ) 0
i

f
x

x





   

UNCONSTRAINED OPTIMIZATION

The previous theorem states a necessary condition for an interior point 

being a relative maximum or minimum point. 

The points that can be local max or min must be investigated between 

points belonging to the boundary of the domain A or the critical 

points.

Anyway the previous condition is not sufficient since if x* is a critical 

points then it is not necessarely a local max or min.



Ex2: determine the critical points of function

The domain A is R2 and all points in A are interior points.

The partial derivatives are:

The critical points can be found by solving the following

system:

Thus points P=(1,2) and Q=(-1,2) are critical points of f.

They can be local max or min points.

3 23 4z x x y y   
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23 3, 2 4x yz x z y   

2 13 3 0

22 4 0

xx

yy

    
 

  



-2 -1.5 -1 -0.5 0 0.5 1 1.5 21
2
3

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

y

z=x3-3 x+y2-4 y

x

z

local min

From the graph of f it can be observed that the critical point P is a 

local minimum point
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From the graph of f it can be observed that the critical point Q is 

not a local minimum/maximum point (it is called saddle point)  

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

1

1.5

2

2.5

3

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

x

z=x3-3 x+y2-4 y

y

z

no loc

min/max
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Ex3: determine the critical points of function

The domain A is the set of points having x≥0 (that is the 

semi-plane with not-negative x values) as below.

42 2z x x y  
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The partial derivatives are:

The critical points can be found by solving the following

system:

P can be local max or min point. But in addition local max

or min points can belong to the border of A, that is the 

set x=0.

31
1, 8x yz z y

x
  
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3

1
10

(1,0)
0

8 0

x
x

Px
y

y

 
 

   
 



From the graph of f it can be observed that the critical point P is 

not a local minimum/maximum (it is a saddle point)  

0.9
0.92

0.94
0.96

0.98
1

1.02
1.04

1.06
1.08

1.1

-0.1

-0.05

0

0.05

0.1

0.9975

0.998

0.9985

0.999

0.9995

1

x

z=2sqrt(x)-x+2y4

y

z

P



2 2

1 1 2 3 2 2ln( )z x x x x x x    
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1

1 1 1
1

2 2

3 2 3 2

2

2 3

2 3

3

11
1 0

1

2 1 0 2 1 0

0 or 0

2 0

xy

x x x
x

y
x x x x

x
x x

y
x x

x

 
    

  
        

    
 


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Two different systems must be consider in order to find all

the solutions:

And three solutions are found all belonging to A. The critical

points are: M=(1,0,1), N=(1,0,-1) and P=(1,-1/2,0)

1 1 1

2 2

3 2 3 3

2 2 2

1
1 1

2

3 2 2 2

33
3

1 1 1

2 1 0 1 0 1,

0 0 0

1
1 1

1
2 1 0 2 1 0         

2
00

0

x x x

I x x I x I x

x x x

x
x x

II x x I x II x

xx
x

   
  

          
     

    
           

    



Determine the critical points of the following functions:

2 2

2 2

1 2 2 3 2

2

3 1 2

2 2

4

1 2 3 3 4

(1) 3 2 6 12

(2)

(3) ( 1) 4

(4) ( 2) ( 3)

(5) ln 2 4( 5)

(6) 3 5

y

z x y xy x

z xe x y

y x x x x x

y x x x

z x x y

y x x x x x

   

  

   

   

   

  
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Homeworks
EX 1.3



THE SECOND PARTIAL DERIVATIVES

If all the first partial derivatives are derivable again, 

then it is possible to calculate their partial derivatives 

thus obtaining:

2

=    with 
i jx x

j i j i

f f
f i j

x x x x

   
      

2 2

2 i ix x

i i i

f f
f

x x x

 
 

  

Mixed second 

derivative

Pure second 

derivative
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   

2

2 2

: ,   open set, is a C  function on A then

                   

           ,

        
j i i j

n

f f
x x

f A R R A

x

x x x x

A i j

 






 





  



If 

and 

Def: function of CLASS C2

If all the second derivatives of f exist and are continuous, then f is 

said to be of C2 class

UNCONSTRAINED OPTIMIZATION

Schwarz THEOREM

We will consider only C2 functions!
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Def: Hessian of f in point x*

Let f be of C2 class and let x* be an interior fixed point. The hessian 

of f in point x* is given by:

UNCONSTRAINED OPTIMIZATION

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

n

n

n n n n

x x x x x x

x x x x x x

x x x x x x

f x f x f x

f x f x f x
Hf x

f x f x f x

  

  


  

 
 
 

  
 
 
 

L

L

M M L M

L

Notice that Hf is a symmetric square matrix (nxn).



Ex5: consider the following function

The first partial derivatives are given by:

The second partial derivatives are given by:

3 2

1 2 33y x x x 
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1 2 3

2 2

1 2 3 29 , 2 ,x x xy x y x x y x    

1 1 1 2 2 1 1 3 3 1

2 1 1 2 2 2 2 3 3 2

3 1 3 1 3 2 3 2 3 3

1

3 2

2

18 ,            0 ,                0 ,

0 ,       2 ,                   2 ,

0 ,       2 ,        0

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x

y x y y y y

y y y x y x y

y y y x y y

    

      

     



Hence the Hessian matrix is:

While the Hessian matrix in point (1,2,3) is:
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1

3 2

2

18 0 0

( ) 0 2 2

0 2 0

x

Hf x x x

x

 
 

   
  

18 0 0

( ) 0 6 4

0 4 0

Hf x

 
    
  



1. Consider the following function

and determine the Hessian matrix 

2. Consider the following function

and determine the Hessian matrix in point (1,0,-2)

2 3

1 3 2 1 2 32 5y x x x x x x  

UNCONSTRAINED OPTIMIZATION

Homeworks
EX 1.4

4 4 3

1 2 3 4 3 2y x x x x x x  
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Def: Definition of a symmetrix matrix

Let A=[aij] be a symmetric matrix (nxn). We recall that it admits only 

real eigenvalues and the following definition holds. 

A is:

Positive definite iff all the eigenvalues of A are positive,

Negative definite if all the eigenvalues of A are negative,

Positive semidefinite if all the eigenvalues of A are not negative and 

at least one is zero

Negative semidefinite if all the eigenvalues of A are not positive and 

at least one is zero

Indefinite if A admits both positive and negative eigenvalues
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Ex6: The following matrix B is indefinite, in fact:

2 2

1 0 0

B 0 2 1

0 1 0

1 0 0

| | 0 2 1 (1 )(2 )( ) (1 )

0 1

(1 )( 2 1) 0 1 or ( 2 1) 0

2 8
that is 1 or 

2

Two  positive eigenvalues and one negative eigenvalue

B I


     



     

 

 
   
  



          

 

        


  
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Ex7: The following matrix C is indefinite, in fact with 

MatLab:

>> C=[-1 0 0; 0 2 -1; 0 -1 0]

C =

-1     0     0

0     2    -1

0    -1     0

>> eig(C)

ans =

-1.0000

-0.4142

2.4142

1 0 0

0 2 1

0 1 0

C

 
   
  



Determine the definition of the following matrices:
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Homeworks
EX 1.5

3 0 0

0 2 1 analitically and with MatLab

0 1 0

4 1
analitically and with MatLab

1 2

0 2 0

2 1 1 with MatLab

0 1 1

B

C

D

 
    
  

 
  
 

 
   
  



*

* *

*

Let :   function and .

(1) If the Hessian Hf( ) is a  matrix then   is a  of 

(2) If the Hessian Hf( ) is a 

relativnegative e MAXdefinite

positive

nf A R R x A

x x f

x

  2
be a C A is an interior cirtical point of 

*

* *

 definite

indefini

 matrix then   is a of 

(3) If the Hessian Hf( ) is  then   is neither a relative MAX nor

a relative MIN of . It

relative M

 is a

IN 

SADDLE

t

  P I T

e

O N .

x f

x x

f

Second order condition: THEOREM
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Def: Definition SADDLE POINT

 
     
     

*
: , , , 

there exists points , A such that   

and there exists points , A  such that   

An interior point A is a SADDLE POINT of  if n
x f A R R B x r

x B x r f x f x

x B x r f x f x



 

 

   

  

  
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Notice that: the previous Theorem states only a sufficient condition! 

In fact, if the Hessian matrix is semi-definite in an interior critical 

point, then nothing can be said about the nature of that critical point! 

We will solve analytically some problems of Unconstrained 

Optimization that are not TOO COMPLEX.



Ex8: Determine the local max and min points of the 

following function:

The critical points are given by the solutions of the 

following system:

The Hessian matrix in point P is given by:
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2 2 2

1 2 3 1 2 3 1 3( , , ) 2 2 5f x x x x x x x x     

1

2

3

1

2

3

2 2 0

2 0 (1,0,1)

2 2 0

x

x

x

f x

f x P

f x

   


   
   

1 2 3

2 0 0

( , , ) 0 2 0 (1,0,1)

0 0 2

Hf x x x Hf

 
   
 
 
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(1,0,1) is a diagonal matrix 

hence its eigenvalues are given by the 

elements belonging to the main diagonal

that 

Hf

are all positive

HENCE

(1,0,1) is a LOCAL MINIMUM point of f



Ex9: Determine the local max and min points of the 

following function:

The domain is given by the points (x,y) having x>0. All

points in the domain are interior points.The critical points

are given by the feasible solutions of the following system:

Only the point (1/2,2) is a critical point since (-1/2,2) 

cannot be considered. In fact (-1/2,2) does not belong to 

the domain so that (-1/2,2) is an unfeasible point!

UNCONSTRAINED OPTIMIZATION

2 4ln 2 32z x x y y   

2
2

3 3 3

1 1 4 1
4 0 0 4 1

2

4 32 0 4 32 8 2

x

y

x
z x x x

x x

z y y y y

 
         


         



The Hessian Matrix is given by:

The diagonal matrics has eigenvalues equal to -8 and 48

Hence the hessian matrix in the critical point is indefinite 

then:
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(1/2,2) is a SADDLE POINT of f

2
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0 12
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              
 



From the graph and level curves of f in an r-Ball about 

(1/2,2) the saddle point can be observed!
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Ex10: Determine the local max and min points of the 

following function:

The critical points are given by the solutions of the 

following system:
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3 2 2

1 2 1 2 32 ( 1)z x x x x x    
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The Hessian matrix is given by:

We use MatLab to find the eigenvalues of the two matrices:

>> eig([0 2 0;2 2 0;0 0 -2])

ans =

-2.0000

-1.2361

3.2361

>> eig([4 2 0;2 2 0;0 0 -2])

ans =

-2.0000

0.7639

5.2361
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16 2 0 0 2 0 4 2 0

( ) 2 2 0  so that ( ) 2 2 0  while ( ) 2 2 0

0 0 2 0 0 2 0 0 2

x

Hf x Hf P Hf Q

     
            
            

P and Q are SADDLE POINTS of f



Determine the local max and min points of the following 

functions (you can use MatLab to calculate the eigenvalues).
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Homeworks
EX 1.6
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NOTICE THAT:

in general an unconstrained optimization problem can be difficult to be 

solved.

The complexity of the problem-solution depends on several factors

such as:

- THE NUMBER OF VARIABLES, 

- the ANALYTICAL FORM of the GIVEN FUNCTION, 

- the impossibility to conclude when the HESSIAN IS SEMI-

DEFINITE etc.

Such cases will be attached by using MatLab!


