
1

Mathematical and
computational methods for

economists
PART II

Prof. Mauro Maria Baldi

Department of Economics and Law,
University of Macerata,

mauromaria.baldi@unimc.it

2

 The linspace command

 Punctual operations

 Functions applied to vectors

 for loops

 while loops

 selection

 infinite loops

AGENDA

3

This material was prepared also taking inspiration from
some slides by Professor Elisabetta Michetti, to whom my
thanks go.

ACKNOWLEDGEMENT

4

An equally spaced vector from i to j is a vector in which

i is the first element

j is the last element

The distance between each element and the previous one is constant and
given by p

The command i:p:j is used to create an equally spaced vector from element i
to element j with step p

Notice: if i>j a negative p must be used

Notice: if p is not specified then p=1 will be assumed

OPERATOR :

5

EX: save a row vector Y with equally spaced elements from 0 to 40 and step 4

EX: from vector Y, create a new vector given by the elements of Y from the
second to the sixth

Notice: in this last case p is not specified since the required step is equal to 1

OPERATOR :

6

I) Save the equally spaced column vector P having elements from -10 to 60 and
step 2.

II) Save the equally spaced row vector Q having 11 elements from -1 to -6.
Which step do you have to use?

III) Trasform Q into a column vector and then delete its elements from the 2nd
to the 5th

EXERCISE

7

SOLUTION - I

>> P = (-10:2:60)'

P =

-10

-8

-6

-4

-2

0

2

4

6

8

% etcetera

54

56

58

60

The array has been cut for obvious
reasons of space. If you try on your
own, you will see all the elements in
the array.

This time, we'll be working directly in the
command window. It's a personal choice
whether to write a script or work directly in
the command window. Generally, complex
programs require a script (and often more
than one!), while instructions for simpler
problems can be typed directly into the
command line

8

SOLUTION - II

To address this point, we need to find a formula for the step size. Consider, for
example, the array [0, 2, 4]. There are three equally-spaced elements between
0 and 4 with a step size Δ of 2. Notice that

Δ =
4 − 0

3 − 1
= 2

Last element in the array First element in the array

Number of elements in the array

It is easy to write the general formula for the interval [�,
] with � equally-

spaced points:

Δ =

 − �

� − 1

9

SOLUTION – III

>> step = (-1 - (-6))/(11 - 1)

step =

0.5000

>> Q = -6:step:-1

Q =

Columns 1 through 4

-6.0000 -5.5000 -5.0000 -4.5000

Columns 5 through 8

-4.0000 -3.5000 -3.0000 -2.5000

Columns 9 through 11

-2.0000 -1.5000 -1.0000

As we will see shortly, there is a more
efficient method for generating an evenly
spaced array based on the interval's
boundaries and the desired number of
points.

10

SOLUTION – IV

>> Q = Q';

>> Q(2:5) = []

Q =

-6.0000

-3.5000

-3.0000

-2.5000

-2.0000

-1.5000

-1.0000

11

To create an equally speced vector from i to j composed by n elements use
the command linspace(i,j,n)

EX: save the row vector V having 20 equally spaced elements from -2 to 6

EX: delete the elements of V having even indexes

OPERATOR linspace

12

Save the row equally-spaced vector A with 60 elements from 3 to 20 and the
equally spaced column vector B with 10 elements from 2 to -5

Which step has been used in the two cases?

EXERCISE

13

Consider two vectors X and Y of the same type (both row or column) and the
same dimension (same number of elements)

Then it is possible the sum (difference) X+(-)Y between the two vectors,
thus obtaining Z of the same type and dimension of the initial vectors. Each
element of Z is given by the sum (difference) of the elements of X and Y
having the same index

EX: P row vector with equally spaced elements from 6 to 20 with step 2 and
Q row vector with 8 equally spaced elements form 1 to 3. Compute R=P-Q

You have to use the operator + (-)

Notice: if it is computed X+1, the number 1 is added to each element of X

OPERATION: sum

14

Equally spaced vectors: save row A with 16 elements from 3 to 20 and column
B with elements from 0 to 90 step 5

1. Can you sum the two vectors?

2.Trasform the two vector in order to make their sum possible.

EXERCISE

15

Consider a vector X and a real number k.

The scalar moltiplication kX gives a vector Z (same type and dimension of
X). Each element of Z is given by the product of number k with the
correspondent element of X

EX: compute S=-10R

The command to be used is *

OPERATION: PRODUCT BETWEEN A SCALAR AND A VECTOR

16

Save the row vector X with elements -1,0,5,7 and the equally spaced row
vector Y with 4 elements form 10 to -8.

1. Compute Z=X+Y.

2. Compute V=0.5X.

3. Compute Z-2V.

EXERCISE

17

It is used to compute the products between two vectors, element by
element.

Consider two vectors X and Y of the same type and same dimension.

It is possible to compute the punctual product X.*Y between the two
vectors. The vector Z, of the same time and dimension of X, is obtained and
each element of Z is given by the product of the elements of X and Y having
the same position.

EX: consider the two column vectors A with elements 0,-1,3 and B with
elements -3,2,2. Compute their punctual product.

The command to be used is .*

OPERATION: PUNCTUAL PRODUCT

18

Consider two vectors X and Y of the same type and dimension

Then it is possible the punctual division X./Y thus obtaining Z: each
element is given by the division between the corresponding element of X and
Y.

EX: consider two row vectors A=(0,-1,1) and B=(-1,-2,-3). Compute the
punctual division A./B

The command to be used is ./

Notice: if one lement of Y is zero, the vector Z is computed but Inf or NaN
will be notified

OPERATION: PUNCTUAL DIVISION

19

Save the row vector X with elements -1,0,1,2,3 and the row vector Y with
equally spaced elements from -3 to 1 with step 1.

1. Calculate Z as the puntual product between X and Y. Does the commutative
property hold?

2.Obtain V by dividing X with respect to Y. Is it possible on set ℝ of real

numbers? And with MatLab?

3. Substitute the null elements of Y with the unitary value and calculate
V=X./Y+3X-1.

EXERCISE

20

Consider a vector X and a real number k. Then it can be computed the
punctual power X.^k thus obtaining a vector in which each element is
obtained as the power-k of the correspondent element of X.

EX: row equally spaced vector A with 10 elements from 7 to 21 and k=1/3.
Compute A.^k

The command is .^

Notice: if for some elements of X the power-k cannot be computed, it will be
notified. The other elements will be calculated. If the operation is defined only
in complex set, it will be computed.

OPERATION: PUNCTUAL POWER

21

Consider two vectors X and Y of the same type and dimension. Then it can be
computed the punctual power X.^Y thus obtaining a vector in which each
element is obtained by raising each element of X to the correspondent
element of Y.

EX: A is the row with elements -2,0,4 while B is the row with elements

0.5,-1,2.

The command is, again, .^

Notice: the first element of the obtained vector is a complex number while
the second element cannot be computed (Inf is notified).

OPERATION: PUNCTUAL POWER

22

Save the column vector X with elements -10,0,1,2,3 and the column vector Y
with 6 equally spaced elements from -1 to 1.5.

1. Calculate Z by elevating each element of X to the power -1. Is it possible
in ℝ? With MatLab?

2. Calculate W=X.^Y and observe the result to understand its meaning.

EXERCISE

23

Consider a vector X (row or column with dimension n) and let f be a
function of one real variable.

Then it is possible to calculate f(X) thus obtaining a vector Z (row or column
with dimension n) such that each element of Z is given by the application of
function f to the correspondent element of vector X.

EX: A=[2,3,7,9] and � � = �� ��. Calculate � � .

OPERATION: A FUNCTION APPLIED TO A VECTOR

24

Save the following row vectors: X with equally spaced elements from 10 to 30
and step ¼ and Y with elements -1,3,7,0

1. Let f(x)=ln(x)-(x+1)2/3. Calculate Z=f(X) and observe the result to
understand its meaning.

2. Let f(x)=1/x+2x-ln(2x). Calculate W=f(Y) and observe the result to
understand its meaning.

EXERCISE

25

Save the row vector X with 24 equally speced elements
form -5 to 7

2

 Calculate 2

 From delete the elements

 having indexes that are multiple of 3

 Create with equally spaced elements form

 1 to 16 step 1

 Calculate, if possible,

A.

B.

C.

D.

2
 Let ()E.

Y X

Y

Z

V Y Z

x
f x



 




3 3
, calculate ()

0.2
W f Z

x


Notice: use the punctual operators when it is necessary!

EXERCISE

26

Save the column vector A with equally speced elements form 9 to -
18 step-0,5 and the row vector B with elements (7,-1,3,5,8,e).

2

| 2|

3

 Which is the dimension of ?

 Substitute the 10th element of with -3

 Transform the row vector into the column vector 1

 Let () , calculate (B1)

 Let

A.

B.

C.

D.

E. () 3, calculate (

x

x

A

A

B B

f x e C f

f x x D f



 

  )A

EXERCISE

27

Create the row vector X with 8 equally speced elements from 1 to
25, the row vector Y with equally speced elements from 10 to
90 step 10, the column vector Z with 8 elements all equal to 1

 It it possible to compute ? Why?

 Delete from Y the 6th element

 Convert into a row vector

 Calculate

A.

B.

C.

D.

E.

(. /).^

 Let () (30) ln(30), calculate ()

X Y

Z V

W X Y V

f x x x f W





  

EXERCISE

28

Save the row vectors x=(-1,1,-2,2,-3,3), y=(7,5,-1,3,2,0) and
z=(e,e2,e3,e4,e5,e6)

3 3 2

2

0.5

 Save , log 10, 5

 Calculate (-)

 Let () 10 ,calculate (

A.

B.

C.).

a e b c

V ax by cz

f x x f V

  





Notice: find a way to define z without listing all its elements

EXERCISE

29

AGAIN OUR GUIDING EXAMPLE

The last variant of our guiding example was saved in simple_interest_5.m

w0 = 2;

ii = .1; % It's the same as 10/100 or 0.1

w3 = w0*(1 + ii*3);

fprintf("w3 = %.2f\n", w3)

w4 = w0*(1 + ii*4);

fprintf("w4 = %.2f\n", w4)

w5 = w0*(1 + ii*5);

fprintf("w5 = %.2f\n", w5)

w3 = 2.60

w4 = 2.80

w5 = 3.00

The script yielded:

30

CAN WE DO BETTER?

We can use what we have learnt so far with arrays to find the same results
with less instructions! Check it out in script simple_interest_6.m

w0 = 2;

ii = .1;

t = 3:5;

w = w0*(1 + ii*t)

The result in the command window is:

w =

2.6000 2.8000 3.0000

31

ANOTHER VARIANT OF OUR GUIDING EXAMPLE

To better appreciate the power of the punctual operator, let's consider our
guiding example. This time, we will apply the compound interest rule and work
directly in the command window.

>> w0 = 2; ii = .1; t = 3:5;

>> w = w0*(1 + ii).^t

w =

2.6620 2.9282 3.2210

Again, you are free to choose whether to write a script or work directly in the
command window.

32

CAN WE DO BETTER?

Let’s go back to the results of the last two examples. The results respectively
were:

w =

2.6000 2.8000 3.0000

Now, we want to see something like this:

The amount at time 3 is 2.6
The amount at time 4 is 2.8
The amount at time 5 is 3.0

To accomplish this, we need to introduce a new tool: the iteration.

w =

2.6620 2.9282 3.2210

33

ITERATION

The word iteration comes from the Latin. In Latin, the verb «iterare» means to
repeat. An alternative term in non-Latin Computer-Science is loop.

There are several kinds of loops in computer programming that are common to
all the programming languages. Perhaps the most popular one is the for loop,
which we will introduce first.

The syntax

for index = an_array
% internal code

end

indicates that the variable «index» takes on, in turn, all the values stored in the
array «an_array».

Let’s examine some examples to solidify this concept.

34

DISPLAY THE CONTENT OF AN ARRAY

Suppose you have the array «cost» containing the cost of several products
and you want to display them. The code is in script loop1.m

cost = [500 1000 70];

for c = cost

disp(c)

end

The variable c takes on, in turn,
all the values of the elements
stored in the array «costs».

Each value is then displayed in
the command line.

The result is:

500

1000

70

35

CAN WE DO BETTER?

We want to improve the code in order to display something like this:

The price of product 1 is 500 euro
The price of product 2 is 1000 euro
The price of product 3 is 70 euro

If we have the index ii of the array «cost», then the label of the product is the
index ii itself and its price is given by cost(ii).
So, we need to print something like:

where ii ranges from 1 to 3.
Thus, the array regulating the for loop is:

1:3

fprintf("The price of product %d is %.2f\n", ii, cost(ii))

36

A FIRST SOLUTION (NOT RECOMMENDED)

Let’s save this code in script loop2.m

cost = [500 1000 70];

for ii = 1:3

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

We get:

The price of product 1 is 500.00

The price of product 2 is 1000.00

The price of product 3 is 70.00

37

A FIRST ISSUE

The code is correct but there is a drawback. How about if we add a new
product? For example, we can have something like this:

cost = [500 1000 70 50];

for ii = 1:3

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

We still get:

The price of product 1 is 500.00

The price of product 2 is 1000.00

The price of product 3 is 70.00

But the price of the new product has not been displayed!

38

ANOTHER ISSUE

Suppose now we have only two products:

cost = [500 1000];

for ii = 1:3

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

This time we even get an error!

The price of product 1 is 500.00

The price of product 2 is 1000.00

Index exceeds the number of array elements. Index must not

exceed 2.

Error in loop2 (line 5)

"is %.2f\n", ii, cost(ii))

39

HOW TO FIX THE PROBLEM - I

We could fix the problem in the two previous examples as follows:

cost = [500 1000 70 50];

for ii = 1:4

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

The respective outputs are:

The price of product 1 is 500.00

The price of product 2 is 1000.00

The price of product 3 is 70.00

The price of product 4 is 50.00

cost = [500 1000];

for ii = 1:2

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

The price of product 1 is 500.00

The price of product 2 is 1000.00

40

CAN WE DO BETTER?

The previous scripts are correct but are prone to errors

cost = [500 1000 70 50];

for ii = 1:4

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

cost = [500 1000];

for ii = 1:2

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

If the length of the array changes, we also need to update the upper bound
of the array associated with the indexes. Forgetting to do this could lead to
incorrect behavior in the program.

We need a function to determine the number of elements in an array. Both
the length() and numel() functions can serve this purpose, and they behave
similarly for one-dimensional arrays.

41

AN EXAMPLE

>> v1 = ["sono", "il", "vettore", '1'];

>> length(v1)

ans =

4

>> v2 = ["ed io sono", "il vettore", 2];

>> numel(v2)

ans =

3

>> % Continues in the next box

>> v3 = (5:2:11)‘

v3 =

5

7

9

11

>> length(v3), numel(v3)

ans =

4

ans =

4

42

HOW TO FIX THE PROBLEM - II

Let’s write the improved code in script loop3.m

cost = [500 1000 70];

for ii = 1:length(cost)

% or:

% for ii = 1:numel(cost)

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

We have:

The price of product 1 is 500.00

The price of product 2 is 1000.00

The price of product 3 is 70.00

43

HOW TO FIX THE PROBLEM - III

This time, if we change the array, we don’t get any error.

cost = [500 1000 70 100];

for ii = 1:numel(cost)

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

The price of product 1 is 500.00

The price of product 2 is 1000.00

The price of product 3 is 70.00

The price of product 4 is 100.00

cost = [500 1000];

for ii = 1:numel(cost)

fprintf("The price of product %d " + ...

"is %.2f\n", ii, cost(ii))

end

The price of product 1 is 500.00

The price of product 2 is 1000.00

44

w0 = 2;

ii = .1;

t = 3:5;

w = w0*(1 + ii*t)

w =

2.6000 2.8000 3.0000

>> w0 = 2; ii = .1; t = 3:5;

>> w = w0*(1 + ii).^t

w =

2.6620 2.9282 3.2210

AGAIN OUR FINANCIAL EXAMPLES!

Let’s go back to our financial examples reported below. This time we improve
the way we print the arrays. We name the corresponding scripts
simple_interest_7.m and compund_interest_1.m

45

simple_interest_7.m

w0 = 2;

ii = .1;

t = 3:5;

w = w0*(1 + ii*t);

for it = 1:numel(t)

fprintf("In year %d you gain %.2f €\n", t(it), w(it))

end

In year 3 you gain 2.60 €

In year 4 you gain 2.80 €

In year 5 you gain 3.00 €

46

compound_interest_1.m

w0 = 2;

ii = .1;

t = 3:5;

w = w0*(1 + ii).^t;

for it = 1:numel(t)

fprintf("In year %d you gain %.2f €\n", t(it), w(it))

end

In year 3 you gain 2.66 €

In year 4 you gain 2.93 €

In year 5 you gain 3.22 €

47

OTHER EXAMPLES

In order to become more familiar with the for loops, we
will present the following examples in the next slides:

 Add the name of the products to the costs.

 A variant of the classical «Hello world!» script.

48

DON’T FORGET THE PRODUCTS!

In the script loop4.m, we include the names in the product costs.
We store the product names in another array and then print the
content of both arrays.

cost = [70 500 1000 18000];

product = ["shoes", "mobile phone", "computer", "car"];

for ii = 1:numel(cost)

fprintf("Cost of %s: %.2f €\n", product(ii), cost(ii))

end

Cost of shoes: 70.00 €

Cost of mobile phone: 500.00 €

Cost of computer: 1000.00 €

Cost of car: 18000.00 €

49

HELLO WORLD!

It is common in every programming language course to begin with a
very simple example by printing the sentence: 'Hello, world!' We
already know how to do this, and we accomplish it with the script
hello_world_1.m.

disp("Hello world!")

Hello world!

We modify this widely-adopted tradition by initially printing the string
'Hello, world!' ten times, and subsequently, by printing it a number of
times defined by the user.

50

HELLO WORLD! – VARIANT 1

In script hello_world_2.m, we print ten times the sentence «Hello
world!»

for ii = 1:10

disp("Hello world!")

end

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

51

HELLO WORLD! – VARIANT 2

In the script hello_world_3.m, we showcase the sentence 'Hello,
world!' as many times as decided by the user. To achieve this, we
employ the input() function.

N = input("Choose a number:");

for ii = 1:N

disp("Hello world!")

end

Choose a number:

4

Hello world!

Hello world!

Hello world!

Hello world!

52

NOT ONLY FOR

So far, we have worked with 'for' loops, where the index is
automatically increased.

However, the same iterations can be achieved using
another construct: the 'while' loop.

Nevertheless, in 'while' loops, we need to ensure the
manual incrementation of the index.

Here are some revisited examples, this time implemented
using 'while' loops.

53

COMPOUND INTEREST REVISITED

In the script compound_interest_2.m we use a while loop to display the
elements in the array.

w0 = 2;

ii = .1;

t = 3:5;

w = w0*(1 + ii).^t;

N = length(w);

n = 1;

while n <= N

fprintf("In year %d you gain %.2f €\n", t(n), w(n))

n = n + 1;

end

In year 3 you gain 2.66 €

In year 4 you gain 2.93 €

In year 5 you gain 3.22 €

54

PRODUCTS AND COSTS REVISITED

In the script loop5.m, we revisit the task of displaying product names and
their costs, this time employing a while loop.

cost = [70 500 1000 18000];

product = ["shoes", "mobile phone", "computer", "car"];

N = numel(cost);

it = 1;

while it <= N

fprintf("Cost of %s: %.2f €\n", product(it), cost(it))

it = it + 1;

end

Cost of shoes: 70.00 €

Cost of mobile phone: 500.00 €

Cost of computer: 1000.00 €

Cost of car: 18000.00 €

55

HELLO WORLD REVISITED

In the script hello_world_4.m, we revisit the task of displaying the sentence
'Hello world!' multiple times, allowing the user to decide the iteration count.
This is achieved using a while loop.

N = input("Choose a number:");

ii = 1;

while ii <= N

disp("Hello world!")

ii = ii + 1;

end

Choose a number:

2

Hello world!

Hello world!

56

SELECTION

Let's return to our list of products with their prices. This time, we want to
determine whether a product costs less than a given price (let's say 700€) or
more. The idea is to implement something like this:

if the product ii costs less than 700€ print 'Product(ii) costs less than 700€‘
else print 'Product(ii) costs more than 700€'

This opportunity is provided by the selection operator, whose syntax is:

if condition
% instructions executed when the condition is true

else
% instructions executed if the condition is false

end

57

MORE INFORMATION ABOUT OUR PRODUCTS - I

In the script loop6.m, we display information about our products, including
their prices, and indicate whether each product costs less or more than 700€.

cost = [70 500 1000 18000];

product = ["shoes", "mobile phone", "computer", "car"];

N = numel(cost);

it = 1;

while it <= N

auxString = sprintf("Cost of %s: %.2f€", product(it), cost(it));

if cost(it) <= 700

auxString = auxString + ' <= 700€';

else

auxString = auxString + ' > 700€';

end

disp(auxString)

it = it + 1;

end

58

MORE INFORMATION ABOUT OUR PRODUCTS - II

The result is:

Cost of shoes: 70.00€ <= 700€

Cost of mobile phone: 500.00€ <= 700€

Cost of computer: 1000.00€ > 700€

Cost of car: 18000.00€ > 700€

An important remark: with the instruction

auxString = auxString + ' <= 700€'

we append the string ' <= 700€' to auxString and store the result back in the
variable auxString. This operation is commonly referred to as concatenation,
as it involves combining the existing string 'auxString' with the new string '
<= 700€'.

59

CAN WE DO BETTER?

Suppose now we also want to determine if a product costs exactly €1000. A
potential solution is presented in the script loop7.m.

cost = [70 500 1000 18000];

product = ["shoes", "mobile phone", "computer", "car"];

for it = 1:length(product)

auxString = sprintf("Cost of %s: %.2f€", product(it), cost(it));

if cost(it) == 1000

auxString = auxString + ' = 1000€';

else

if cost(it) <= 700

auxString = auxString + ' <= 700€';

else

auxString = auxString + ' > 700€';

end

end

disp(auxString)

end

60

THE OUTPUT

Cost of shoes: 70.00€ <= 700€

Cost of mobile phone: 500.00€ <= 700€

Cost of computer: 1000.00€ = 1000€

Cost of car: 18000.00€ > 700€

And the output is:

61

CAN WE DO BETTER?

We can enhance our code by consolidating the nested if-else block with the
outer if-else block, utilizing a single if-elseif-else block. The suggested solution
is outlined in the script loop8.m.

cost = [70 500 1000 18000];

product = ["shoes", "mobile phone", "computer", "car"];

for it = 1:length(product)

auxString = sprintf("Cost of %s: %.2f€", product(it), cost(it));

if cost(it) == 1000

auxString = auxString + ' = 1000€';

elseif cost(it) <= 700

auxString = auxString + ' <= 700€';

else

auxString = auxString + ' > 700€';

end

disp(auxString)

end

62

THE OUTPUT

Cost of shoes: 70.00€ <= 700€

Cost of mobile phone: 500.00€ <= 700€

Cost of computer: 1000.00€ = 1000€

Cost of car: 18000.00€ > 700€

And the output is again:

63

ANOTHER EXAMPLE

In the script logical_operators.m, we play with the logical operators
NOT, AND (&), and OR (|) in concert with the selection (if) block.

name = input("Enter the name of a product: ");

cost = input("Enter the cost of " + name + ": ");

if cost == 30

fprintf("The cost of %s is 30 euros\n", name)

end

if cost ~= 40

fprintf("The cost of %s is not 40 euros\n", name)

end

% The code continues in the next slide.

64

%{ Continuation of the code
from the previous slide. %}

if cost > 10 & cost < 20

fprintf("The cost of %s is more than " + ...

"10 euros and less than 20 euros\n", name)

elseif cost < 10 | cost > 20

fprintf("The cost of %s is less than " + ...

"10 euros or more than 20 euros\n", name)

else

fprintf("The cost of %s is either 10 " + ...

"euros or 20 euros\n", name)

end

CONTINUATION

%{ and %} allow us to write
multiple-lines comments

The '+ …' sequence
allows us to break
long strings or
commands across
multiple lines."

65

POSSIBLE OUTPUTS - I

Here and in the next slides, we offer examples of output based on different
inputs.

Enter the name of a product:

"wine"

Enter the cost of wine:

30

The cost of wine is 30 euros

The cost of wine is not 40 euros

The cost of wine is less than 10 euros or more than 20 euros

66

POSSIBLE OUTPUTS - II

Enter the name of a product:

"pencil"

Enter the cost of pencil:

2

The cost of pencil is not 40 euros

The cost of pencil is less than 10 euros or more than 20 euros

Enter the name of a product:

"mug"

Enter the cost of mug:

15

The cost of mug is not 40 euros

The cost of mug is more than 10 euros and less than 20 euros

67

INFINITE LOOPS

Many programming languages, including C, C++, and Pascal, provide a
variation of the while loop known as the do-while or repeat-until loop. The
fundamental concept is as follows:

do

% some instructions

while (a condition is true)

repeat

% some instructions

until (a condition becomes true)

Matlab does not have these types of loops. However, as for other
programming languages, we can use infinite loops.

68

HELLO WORLD…FOREVER!

The following piece of code creates an infinite loop, where all the instructions
within the loop are repeated indefinitely.

while true

% Some instructions

end

You can try with the following loop that eternally displays the sentence «Hello
world!». Use CTR+C to force Matlab to stop the execution of the code.

while true
disp("Hello world!")

end

69

A CURIOSITY

The term 'true' in the preceding code represents a data type known as
boolean. You can gain an understanding of the boolean type by entering the
following instructions:

>> a = true

a = logical 1

>> ~a % Negation

ans = logical 0

>> 1 > 2

ans = logical 0

>> p = 'a' > 'b'

p = logical 0

>> p = 'a' < 'b'

p = logical 1

Due to space constraints, certain white
lines and newlines have been omitted.

70

ALPHABETICAL ORDER

The last two commands are very interesting because they allow us to determine
the alphabetical order of two words or even sentences. The result of the
comparison can be stored in a boolean variable.

>> product1 = "potatoes";

>> product2 = "tomatoes";

>> product3 = "peppers";

>> product1 > product2

ans = logical 0

>> product1 < product2

ans = logical 1

>> product1 < product3

ans = logical 0

>>product3 < product2

ans = logical 1

It is «true» that «peppers» come before (<)
«tomatoes» in alphabetical order!

71

A VARIANT OF INFINITE LOOP

 For these reasons, the expression 'while true' signifies

'perform the following instruction as long as true remains true.'
However, since true is always true, the instructions are
executed indefinitely.

 A convention shared by all programming languages is that the
value 0 corresponds to false, while all other values correspond
to true. Therefore, instead of 'while true,' we can use, for
example, 'while 1' to achieve the same result.

 But how can we escape from an infinite loop? We implement a
stopping condition within an 'if' block, in which we enforce the
exit from the infinite loop using the 'break' instruction.

72

In the script loop9.m, we address the same results achieved in the script
loop8.m, this time using an infinite loop and forcing its end after the counter
reaches the end of the array.

AN EXAMPLE

cost = [70 500 1000 18000];

product = ["shoes", "mobile phone", "computer", "car"];

it = 1;

N = length(cost);

while 2

if it > N

break;

end

auxString = sprintf("Cost of %s: %.2f€", product(it), cost(it));

% The code continues in the next slide

73

% The code originates from the preceding slide.
if cost(it) == 1000

auxString = auxString + ' = 1000€';

elseif cost(it) <= 700

auxString = auxString + ' <= 700€';

else

auxString = auxString + ' > 700€';

end

disp(auxString)

it = it + 1;

end

CONTINUATION AND OUTPUT

Cost of shoes: 70.00€ <= 700€

Cost of mobile phone: 500.00€ <= 700€

Cost of computer: 1000.00€ = 1000€

Cost of car: 18000.00€ > 700€

